Seamless Deductive Inference via Macros

Arash Sahebolamri
asahebol@syr.edu
Syracuse University
Syracuse, New York, USA

Abstract

We present an approach to integrating state-of-art bottom-up
logic programming within the Rust ecosystem, demonstrat-
ing it with Ascent, an extension of Datalog that performs
well against comparable systems. Rust’s powerful macro sys-
tem permits Ascent to be compiled uniformly with the Rust
code it’s embedded in and to interoperate with arbitrary user-
defined components written in Rust, addressing a challenge
in real-world use of logic programming languages: the fact
that logical programs are parts of bigger software systems
and need to interoperate with other components written in
imperative programming languages.

We leverage Rust’s trait system to extend Datalog seman-
tics with non-powerset lattices, much like Flix, and with
user-defined data types much like Formulog and Souffle.

We use Ascent to re-implement the Rust borrow checker,
a static analysis required by the Rust compiler. We evaluate
our performance against Datafrog, Flix, and Soufflé using
the borrow checker and other benchmarks, observing com-
parable performance to Datafrog and Soufflé, and speedups
of around two orders of magnitude compared to Flix.

CCS Concepts: » Theory of computation — Program
analysis; Constraint and logic programming; Logic and
databases; Description logics; « Software and its engi-
neering — Automated static analysis.

Keywords: Logic Programming, Datalog, Program Analysis,
Static Analysis, Rust, Ascent

ACM Reference Format:

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski. 2022.
Seamless Deductive Inference via Macros. In Proceedings of the 31st
ACM SIGPLAN International Conference on Compiler Construction
(CC °22), April 02-03, 2022, Seoul, South Korea. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3497776.3517779

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC 22, April 02-03, 2022, Seoul, South Korea

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9183-2/22/04...$15.00
https://doi.org/10.1145/3497776.3517779

Thomas Gilray
gilray@uab.edu
University of Alabama at Birmingham
Birmingham, Alabama, USA

77

Kristopher Micinski
kkmicins@syr.edu
Syracuse University
Syracuse, New York, USA

1 Introduction

Modern software is often comprised of code written in a mix
of multiple programming paradigms including imperative,
functional, and logical programming. Logic-programming
languages, such as Datalog [5], enable high-performance
deductive inference in modern implementations (e.g., Log-
icBlox [1] or Soufflé [24]) by using efficient operations on
database tables to perform the forward-chaining that opera-
tionalizes Datalog’s declarative inference rules. For example,
a business analytics system may use a traditional relational
database to store customer relationships, perform compu-
tations on that data via a library of functional code, and
also perform deductive inference over the database to in-
fer derived properties such as per-customer profit margins,
clusters of related customers, or invoice categories.

When integrating logic programming into conventional
codebases, programmers grapple with an inherent tension—
should they use a fast, dedicated logic programming lan-
guage, or should they chose to construct a custom task-
specific implementation? Dedicated languages and engines
are often faster and more scalable (as mature stand-alone
implementations), but are challenging to integrate with
an existing codebase in another language as they require
(de)serialization at the boundary between the deductive in-
ference engine and the system per-se.

In this paper we introduce Ascent, a chain-forward logic
programming language embedded in Rust via procedural
macros. Ascent utilizes a novel compilation methodology
(including state-of-the-art techniques such as index genera-
tion and semi-naive evaluation) to translate an extension of
Datalog to high-performance relational-algebra kernels im-
plemented in Rust. The central problem tackled by Ascent is
to offer all of the benefits of modern high-throughput chain-
forward logic programming while cleanly integrating with
arbitrary application-logic written in the Rust programming
language. Beyond simply generating efficient code, Ascent
also allows Datalog rules to call into existing Rust code and
vice-versa, enabling code reuse and separation of concerns.

Ascent’s semantics extends Datalog, which supports logi-
cal rules expressible as Horn-clauses. In practice, using Dat-
alog often requires extensions to its core logic to scale to
typical deductive inference tasks (e.g., the PageRank algo-
rithm is not expressible in vanilla Datalog, but is expressible
with the common addition of aggregators). While Datalog
encompasses many important deductive inference tasks (e.g.,
the DOOP analysis engine uses the Soufflé Datalog engine to

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3497776.3517779
https://doi.org/10.1145/3497776.3517779

CC ’22, April 02-03, 2022, Seoul, South Korea

achieve a high-performance implementation of Java points-
to analysis [27]), a few recent languages (such as Datafun
[2] and Flix [16]) further extend Datalog with support for
fixed-point computations over non-powerset lattices. While
these languages offer richer semantics compared to Datalog
and enable high-level specification of logic programs over
lattices, they do not focus on efficient compilation. Ascent’s
compilation strategy also includes support for computing
fixed points over arbitrary lattices.

In the remainder of this paper, we detail our implemen-
tation of Ascent and describe our macro-based compilation
methodology. Section 2 details the preliminaries of Datalog
and Rust, upon which Ascent is built. Section 3 then intro-
duces Ascent by example, detailing its syntax and semantics
(we leave a formal specification of Ascent’s semantics to
future work); specifics of our implementation are presented
in Section 4. We evaluated Ascent in a few ways. First, we
reimplemented Polonius [18] (a Datalog-based implemen-
tation of the Rust borrow checker using a popular library,
Datafrog [21]) in Ascent; our implementation achieves com-
parable performance (generally within 1 — 4X) to Polonius’
Datafrog-based implementation while requiring only half as
many lines of code. Next, we use Ascent’s lattice features
to compute shortest paths in several large graphs; in these
experiments we observe our Ascent implementation to be
between 56X and 170X faster than a comparable implemen-
tation in Flix.

Specifically, we offer the following contributions:

e Ascent, an open-source logic-programming language
extending Datalog, embedded in Rust, implemented
via Rust’s procedural macros.

e More generally, a compilation methodology for lattice-
oriented deductive inference to high-performance Rust
code.

e An evaluation demonstrating (a) the ability of Ascent
to scale to realistic deductive inference tasks by port-
ing the implementation of an existing Rust borrow
checker to Ascent, (b) that Ascent’s compilation strat-
egy in general and for lattice-based computations en-
ables orders-of-magnitude performance improvements
vs. Flix, and (c) that Ascent exhibits competitive per-
formance compared to Soufflé.

2 Background

We now briefly introduce relevant background of Datalog,
a chain-forward logic programming language, and Rust, a
safety-oriented language intended for development of effi-
cient native code.

2.1 Datalog

A Datalog program is comprised of two components: an
extensional database (EDB) enumerating a set of ground
predicates (called facts), and an intensional database (IDB) in

78

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski

the form of a collection of Horn clauses (called rules). Each
rule has the form h « by A- - - Ab, consisting of a single head
clause (h) and a set of body clauses (b;s). Each clause is a pred-
icate name followed by a list of arguments that are either vari-
ables or literal constants: c¢(a, ..., a,,). Variables appearing in
body clauses are implicitly regarded as universally quantified.
For example, the rule path(x, z) « edge(x, y) Apath(y, z)
says that for all x, y, and z, there is a path from x to z if there
exists a fact edge(x, y) and a fact path(y, z).

Datalog enables a specific form of chain-forward logic
programming, restricting head clauses to be positive liter-
als (rather than, e.g., negated literals or disjunctions) and
body clauses to include only positive literals. These restric-
tions ensure Datalog programs are computable. Evaluating a
Datalog program involves iteratively materializing all facts
that must be true, starting from an initial EDB, for each of
the rules in the program. Formally, this semantics is speci-
fied as the least fixed point of the immediate consequence
operator over the set of program rules. The immediate con-
sequence of a rule is the set of facts immediately derivable
from the set of ground facts in the current input database:
ICr(DB) = DBU{Head(R)[®]|30.Body(R)[©] < DB}, where
Head(R) is the head clause of R and Body(R) is the set of body
clauses of R; © is a substitution scheme, a mapping from vari-
ables to values. Here, facts in the set DB have the same shape
as a rule clause: they are predicate symbols followed by a
list of arguments. The immediate consequence operator for
programs lifts this definition to sets of rules.

Datalog forms the implementation strategy for many state-
of-the-art program analyses (e.g., [4, 11, 27]), graph min-
ing [25, 31], and business analytics. Datalog’s declarative
nature enables terse implementations of complex logic, al-
lowing the user (e.g., a program analysis engineer) to focus
on logic core to the task at hand rather than its implemen-
tation details (e.g., the DOOP analysis engine is an order of
magnitude smaller than other points-to analyses for Java,
such as WALA [27]).

Datalog is fairly restrictive, and most production Datalog
engines include extensions to the core logic to enable more
ergonomic implementation. For example, vanilla Datalog
allows only constants to be used as base atoms, and does not
support computing over structured data (such as abstract
syntax trees representing programs). Thus, several efforts
enhance Datalog’s expressivity, including allowing defining
algebraic data types and pure functions [3], allowing comput-
ing fixed points of non-powerset lattices [16], and altering
the semantics of the Datalog rules (e.g., disjunctive Data-
log [9]). Ascent follows these directions, offering a unique
combination of expressivity, convenience, and performance
to the user. Importantly, Ascent strives to be a practical lan-
guage, offering acceptable performance, while integrating
cleanly with existing Rust code and libraries.

Seamless Deductive Inference via Macros

(rule)
(head-cl)
(body-cl)

:= (head-cl)* <- (bOdY'CD*;
== (ident) ({expr)*)

== (ident) ((body-arg)™)

| if (expr)

| if let (pat) = (expr)

| let (pat) = (expr)

| for (pat) in (expr)

| 1(ident)((agg-arg)*)

| age (pat) = (expr)((ident)*) in
(ident) ({agg-arg)™)

| ({disjunction))

(body-arg) := (ident) | (expr) | ?(pat)

(agg-arg) == (ident) | (expr)

(disjunction) == (body-cl)*
| (body-cl)* || {disjunction)

Figure 1. Grammar of Ascent rules. A non-terminal followed
by * means a comma-separated list of 0 or more occurrences of the
non-terminal. (ident), (pat), and (expr) represent valid identifiers,
patterns, and expressions respectively.

2.2 Rust

Rust is a modern, type-safe, systems programming language
meant to produce efficient native code [19]. Rust supports
algebraic data types (ADTs) and pattern matching similar to
Haskell and Standard ML and has an expressive trait system
comparable to Haskell’s type classes, but (similar to C/C++)
does not require a managed runtime or a garbage collector.
Unlike C and C++, Rust focuses on providing strong type-
safety guarantees. Rust’s type system disallows spatial and
temporal memory violations, including dangling pointers,
buffer overflows, use after frees, and similar bugs. Rust’s
type safety is achieved via a linear type system, which tracks
memory ownership and is extended by its borrow system.

Similar to Scheme and Racket [8], Rust has a powerful
procedural macro system. Rust procedural macros are func-
tions that take token streams as input, and produce token
streams to replace the macro invocation. A procedural macro
invocation can contain arbitrary syntax, and is not limited
to valid Rust syntax. We use Rust’s procedural macros to
develop Ascent as a logic programming language embedded
in Rust.

3 The Language

Ascent is not a complex language: its power is due to subtle
extensions to Datalog, allowing a few more syntactic forms
than Datalog, along with the fact that the full power of Rust
is at the user’s disposal for defining data types, functions,
and, as we discuss in 3.1, Lattice types to be used in Ascent
lattice definitions.

79

CC ’22, April 02-03, 2022, Seoul, South Korea

The syntax of Ascent rules is presented in Figure 1. Some
notable differences from Datalog are allowing patterns and
expressions as arguments, and the for form, which gives
Ascent a higher-order flavor in that it allows relations or sets
to be stored as first class values and used like body clauses,
as we’ll see later in this section.

A typical introductory example in Datalog is computing
the transitive closure of an input relation. We’ll first use
Ascent syntax to present this example.
ascent!{

relation edge(i32, 132);
relation path(i32, i32);

path(x, y) <-- edge(x, y);

path(x, z) <-- edge(x, y), path(y, z);
}
These rules compute path, the transitive closure of the input
relation edge. The relation definitions specify the arity and
types of arguments of relations used in the rules.

The two rules in this program are the exact logical re-
quirements for a path to exist between two nodes in a graph.
A Datalog engine or the Ascent compiler is able to com-
pute all the connected nodes in a graph without any further
instructions from the user on how it should do so.

The advantages of Ascent become more apparent with
more involved examples. Abstract CESK* [30] is an ab-
stract interpreter for A-calculus. Abstract abstract machines
(AAMs) like this are used for static analysis of higher-order
languages based on A-calculus. Abstract CESK* is a tunable
analysis, allowing the analysis designer to control the preci-
sion and polyvariance of the analysis through the tick and
alloc functions used in the analysis [10, 30]. For instance, one
instantiation of these functions yields the well-known k-cfa
analysis [26].

¢ —crsk; ', where k € o(a), b = alloc(g, k), u = tick(g, k)

(x,p,0,a,1) (v, p2, 0, a, u)y where (v, p;) € o(p(x))
((eo €1),p, 0,0, t) (€0, p,o U [b — ar(ey, p,a)], b,u)
(v,p,0,a,t)

if k = ar(e, py,)
if k = fn(Ax.e, ps, ¢)

(e, p2, 0 U [b — fn(v, p,c)], b, u)
(e, p2[x = bl,oU [b— (v,p)],c,u)

Figure 2. The abstract CESK* machine, taken from [30]

This analysis contains four rules, we present the first and
last rules in Ascent as a means of motivating the advantages
of Ascent compared to Datalog and a number of Datalog-
derived languages. The other rules are omitted to save space,
there is no obstruction to writing those in Ascent as well.
ascent!{

relation o(Addr, Storable);
relation ¢(LambdaCalcExpr, Env, Addr, Time);

// first rule:

CC ’22, April 02-03, 2022, Seoul, South Korea

¢(v, p2, a, tick(e, t, k)) <--
¢(?e@Ref(x), p, a, t),
o(plx], ?value(v, p2)),
o(a, ?Kont(k));

/] ...

// last rule:

o(b, Value(v.clone(), p.clone())),

¢(e, upd(&p2, x, b), c, tick(v, t, k)) <--
¢(?veLam(..), p, a, t),
o(a, ?Kont(k)),
if let Fn(Lam(x, €), p2, c) =
let b = alloc(v, t, k);

ky

}

The relation o is the store, associating abstract addresses
with values (closures or continuations), the relation ¢ is the
state of the abstract machine, and the rules dictate how the
machine steps from one state to another.

The first rule states that if the control expression in the
current state is a variable reference x, the address for x is
looked up in the current environment p, and its value (o,
p2) is looked up in the store. The machine then transitions
to a state with v as the control expression and p; as the
environment, with the continuation address component (a)
of the state unchanged.

The last rule says that if the current control expression
is a value v (a lambda in pure A-calculus), and there is a
function-application continuation associated with the cur-
rent continuation address a, the machine transitions a state
where the control expression is the body of the invoked func-
tion, e, the environment is updated to bind the parameter of
the function, x, to an allocated binding address, b, which in
turn is bound to the closure (v, p) in the abstract store.

Because the analysis computed is a finite over-
approximation of program behaviors, the store is weakly
updated to accumulate the new closure along with any
other closures bound to the same address. The finite set
of timestamps, each u, is used along with the abstract
allocation function to finitize the set of abstract addresses,
in turn bounding the complexity of the analysis.

In the Ascent rules, we seamlessly weave logical infer-
ence with the additional utilities provided by Ascent: we
use ADTs to represent various components of the analysis
directly, including the AST of the language under analysis,
the Storables (values stored in the store), and the possible
Continuations. We use pattern matching to operate over val-
ues of these ADTS. For example, in the clause ¢ (?veLam(. .),
p, a, t), we check that the current control expression is a
Lam, and bind it to variable v. The ? in argument position
signifies that what follows is a pattern and not an expression.
We use functions written in Rust for definitions of alloc and
tick.

Another interesting point in this example is handling of
environments. They map variables to addresses in the ab-
stract CESK* machine. In the Ascent analysis we are able to
represent them as exactly that, a mapping from variables to

80

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski

addresses: type Env = Rc<BTreeMap<Var, Addr>>. Note that
this analysis is not expressible in Datalog due to the use of
first-class environments [4, 22, 29].

Furthermore, Ascent permits arbitrary expressions in ar-
gument position, allowing us to directly look up the address
of the variable in the first rule in the clause o(p[x], ...).

Among the implementations of Datalog and languages
supporting logical inference in the style of Datalog that
we are aware of, we believe this combination of features is
unique. Soufflé [24] is a popular high-performance Datalog
engine. It has limited support for user-defined data types, but
defining a data structure like BTreeMap that allows efficient
lookup is not realistic in Soufflé. Moreover, user-defined
functions, what Soufflé calls functors, must be defined in
C++ and compiled separately. Flix [16] is a language that
allows logical inference and supports ADTs and user-defined
functions. However, Flix does not support expressions in
argument position, nor does it support pattern matching in-
side rules. Formulog [3] is a language that combines Datalog
with ADTS, first-order functions, and SMT solvers. Formulog
allows expressions and patterns as predicate arguments, but
as we'll see later, it lacks other features of Ascent, including
generative clauses and lattices.

A beneficial aspect of Ascent is the fact that it affords the
programmer precise control over the data structures and
the memory layout of the values manipulated by Ascent
rules. In the abstract CESK* example, we used BTreeMap for
environments. The user might determine that SmallVec (or a
similar data structure that avoids heap allocation if possible)
is a better choice, since environments are bounded in size
(by the number of variables appearing in the program under
analysis), or in another scenario, the user might determine
that since updating BTreeMaps requires cloning the B-tree!,
a better choice would be an immutable data structure that
allows sharing of keys/values across updates, and use a hash
array mapped trie (HAMT), a popular data structure for
immutable maps.

A careful look at Figure 2 may reveal that there is a differ-
ence between the mathematical description of the abstract
CESK* machine and the Ascent rules implementing it. The
Ascent implementation utilizes a widened store [26], a tech-
nique for improving the time complexity of such analyses.
Keeping the stores state-specific is also possible in Ascent,
here is the first rule of the analysis, rewritten to accommo-
date state-specific stores:
¢(v, p2, o, a, tick(v, t,k)) <--

¢(?Ref(x), p, 0, a, 1),

for xv in o[&p[x]].iter(), if let Value(v,p2) = xv,

for av in o[al.iter(), if let Kont(k) = av;

!We take this opportunity to stress that accidental (or otherwise) mutation
of values stored in relations, which would break the semantics of Ascent, is
prevented by Rust’s type system: a variable appearing as a relation argument
is an immutable reference to the stored value.

Seamless Deductive Inference via Macros

We use generative clauses in this rule to iterate over all
the possible values stored for a single address. A generator’s
syntax is taken from the Rust for loop. This is intentional
to signal to the Ascent user that she can take advantage of
Rust’s iterators to populate relations. To show the benefit
of generators, we point to Soufflé generative functor range.
In Soufflé, to populate a relation foo with numbers 0 to 4,
one can write foo(x) :- x = range(9,5). The same can be
achieved in Ascent by using the syntax foo(x) <-- for
x in @..5. The important difference is that any Iterator-
valued expression can be used in place of 0. .5, including
values stored in relations as shown in the rule above. This is
another way in which Ascent takes advantage of the existing
Rust ecosystem.

3.1 Going Beyond the Powerset Lattice

A Datalog implementation discovers additional facts from
the set of currently known facts until a fixed point is reached.
In other words, it ascends the powerset lattice to a fixed point
for a function encoding the Datalog rules (the immediate
consequence operator). Every point in the lattice is a set of
facts, and these points are ordered by set inclusion.

Accumulating more and more facts however is not always
what is required. For example, if we needed to compute the
shortest path lengths in a weighted graph, all the standard
Datalog semantics would be able to do is to compute all
the possible path lengths between nodes, not just the short-
est path lengths. Worse yet, if the graph contained cycles,
the Datalog program would diverge, as there are an infinite
number of paths between nodes in a cycle.

The shortest paths problem can be framed as follows. We
are not interested in the powerset lattice: given the current
database of facts DByU{path(a, b, [;) } and a newly discovered
fact path(a, b, l,), we are not interested in
DBy U {path(a, b,), path(a, b, I,)} as the new database.
Instead, we want to only store min(ly, I;) for nodes a and b:
DBy U {path(a, b, min(l},,))}.

Flix [16] was one of the first languages to tackle this prob-
lem by allowing the user to define arbitrary lattices in addi-
tion to normal relations. Ascent takes inspiration from Flix
and provides similar capabilities.

The Ascent user can use the lattice keyword in place
of relation to define a lattice. Here, we take advantage of
Rust’s type system in enforcing the requirements for a lattice.
The last column of a defined lattice must implement the
Lattice trait (defined in the ascent library).

A lattice is a partial order where every pair of elements
has a least upper bound and a greatest lower bound defined.
The definition of the Lattice trait then is not surprising:
pub trait Lattice: PartialOrd + Sized{

fn meet(self, other: Self) -> Self;

fn join(self, other: Self) -> Self;

}

81

CC ’22, April 02-03, 2022, Seoul, South Korea

This trait is implemented for most of the types of the
standard library where an implementation is appropriate,
the types include integers, bool, Option<T>, and tuple types,
among others. The ascent library also provides a number of
type wrappers for redefining lattice operations. One notable
example is Dual<T>: if T is a Lattice, so is Dual<T>, flipping
the pairs of operations (<=, >=) and (meet, join).

We can now come back to our motivating example and
write the Ascent program for computing the shortest path
lengths in a weighted graph:
ascent!{

lattice shortest_path(i32, i32, Dual<u32>);
relation edge(i32, i32, u32);

shortest_path(x, y, Dual(*w)) <-- edge(x, y, w);
shortest_path(x, z, Dual(w + 1)) <--

edge(x, y, w),

shortest_path(y, z, ?Dual(l));

Since we are interested in shortest paths, we use the type
Dual<u32> to ensure that for any pair of nodes, from the path
lengths computed so far, only the shortest one is stored.

Semantically, an Ascent lattice works differently from
a relation. While a relation can be denoted as a set that an
Ascent evaluation iterates to a fixed point by adding more
facts to, a lattice defined in Ascent is denoted as a partial
map from the non-lattice columns (every column except
the last one) to the lattice column. For our shortest paths
example this would be (i32,132) — Dual<i32>. A fact of
an Ascent lattice then constitutes a partial map defined on
a single point: the non-lattice columns of the tuple.

The least upper bound of two lattices is defined as fol-
lows: when a point is in the domain of both partial maps,
join their respective values, and when a point exists only in
one of the maps’ domains, just take its value.

DB; LIDB, = {(x, yU z) | (x, y) € DBy, (x, z) € DBy} U
{(x, y) | (x, y) €DBy ARz (x, z) €DBy} U
{(x, 2) | (x, 2) € DBy A By. (x, y) € DBy}

The Ascent compiler emits code that uses the normal set
union semantics for relations, and respects this semantics
for lattices.

Having lattices enables more static analyses in Ascent.
Going back to the abstract CESK* example, we may want
to augment the language under analysis with numbers and
arithmetic operations, and keep track of variables bound to
numbers in addition to closures.

Doing so in pure Datalog poses a problem (beyond Data-
log’s inability to express environments). If we assume arith-
metic operations are available in Datalog, we can choose to
have a store for numbers, and have rules in the analysis to
represent the arithmetic operations in the language being
analyzed. The problem with this approach is that unlike reg-
ular abstract CESK* analysis, which, with a suitable choice

CC ’22, April 02-03, 2022, Seoul, South Korea

of the alloc and tick functions, guarantees termination by ab-
stracting the store addresses and in turn finitizing the set of
Storables, the set of integers is not finite, entailing that the
analysis may diverge (e.g., the term let f (x) = f(x+1) in f(0)
will cause the analysis to diverge).

The issue again stems from the analysis being confined to
the powerset lattice and not being able to abstract numbers.
Ascent provides a solution: define a lattice of finite height to
abstract numbers and use it for storing numbers. One candi-
date for such a lattice is a flat lattice, often used for constant
propagation. Using this lattice ensures that the analysis will
not diverge, as once the analysis tries to store two different
numbers at the same address, this lattice ensures they get
replaced by Top. Here is a snippet of the modified analysis
capable of handling numbers:

/] ...
lattice onum(Addr, ConstPropagation<i64>);

onum(b.clone(), lit),
(e, upd(&p2, x, b), c, tick(v, t, k)) <--
¢(?veLit(lit), p, a, t),
o(a, ?Kont(k)),
if let Fn(Lam(x, e), p2, c) = k,
let b = alloc(v, t, k);

This rule is similar to the last rule of Figure 2, except that it
handles numbers rather than lambdas: if the current control
expression is a (abstract) number, the analysis stores it in the
onum lattice, ensuring the number of onum facts stored is
finite, which in turns guarantees termination of the analysis.

3.2 User-Extensible Aggregation

Stratified aggregation and negation are useful additions to
Datalog implemented by many Datalog variants. They can
be simulated in Ascent through use of appropriate lattices.
Negation, sum, and count are achievable by utilizing a Set
lattice; and min and max are less expensive, by respectively
using the Dual type or integers directly. However the er-
gonomics and performance of such solutions are not ideal.

To address this, Ascent provides aggregation clauses. Un-
like typical implementations of Datalog, aggregation in As-
cent is not confined to a set of built-in aggregators. The
ascent library provides common aggregators expected in
Datalog implementations (min, max, sum, count, and mean);
however, these aggregators are provided as library functions.
The user is free to define her own aggregators to be used
inside Ascent rules. One can define a median aggregator for
example, or even a percentile aggregator: an aggregator
parameterized over k that returns the k-th percentile of the
desired column of the aggregated relation:
relation population(i64);
relation population_75p(i64);
/] ...
population_75p(p75) <--

agg p75 = (percentile(75))(x) in population(x);

82

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski

4 Implementation

Ascent is embedded in Rust via procedural macros. Thus, the
Ascent compiler is invoked through the appropriate macro
invocation ascent! {...3}. When invoked, the compiler pro-
cesses the input token stream and produces Rust code for
efficient evaluation of the input program rules. The Ascent
implementation is available online?. The compiler is com-
prised of several key stages, which we describe in this sec-
tion.

Parsing and desugaring. We represent Ascent’s ab-
stract syntax tree (AST) in Rust via conventional structural
types. Ascent first parses the token stream into an AST. Dur-
ing this process, Ascent also desugars some superficial lan-
guage constructs such as ? patterns and disjunctive clauses
(e.g., (foo(x) || bar(x))).

Index selection. Modern Datalog engines achieve per-
formance by having a variety of indices for each relation
according to its usage in the program. Ascent computes
necessary indices by traversing the AST and computing—
for each relation—subsets of columns relevant to joins. For
example, the inclusion of a rule foo(x,z) <-- bar(x,y),
baz(x,y,z) would require bar and baz to be indexed on their
first two columns to allow efficient iteration that only looks
for potential matches on the joined columns. This pass first
computes relevant indices, then particularizes body clauses
within rules to use the appropriate index for a given rela-
tion. This stage also ensures each lattice is indexed on its
non-lattice-columns, required for efficient updating of its
facts.

Computing SCCs and Incrementalization. Rules of
Datalog programs, and by extension Ascent, are stratified
into strata of strongly connected components before exe-
cution. Ascent computes a dependence graph of rules (rule
A depends on rule B iff there is a relation R mentioned in
rule A’s body and rule B’s head) and then computes SCCs
of this dependence graph. For each SCC, we explicate static
(unchanged) and dynamic (inductively updated) relations to
subsequently enable semi-naive evaluation.

Semi-naive evaluation is an efficient evaluation strategy
for Datalog which refines the naive (chaotic iteration) strat-
egy to avoid redundant work by using a worklist. This is
accomplished by partitioning each relation into three sets:
new, delta, and total. total is the subset of facts that have
been discovered in iterations prior to last. delta is the facts
discovered in the last iteration, and the newly discovered
facts for a relation are added to the new set. This partitioning
guarantees that the total versions of dynamic relations do
not need to be joined together, as they won’t yield any new
facts. After determining which relations within an SCC are

Zhttps://github.com/s-arash/ascent

https://github.com/s-arash/ascent

Seamless Deductive Inference via Macros

dynamic, rules in the SCC are duplicated to contain the nec-
essary combinations of delta and total versions of relations
used within their bodies.

Code generation. The incrementalization stage is the last
before code generation. To perform code generation, Ascent
emits a struct for the input Ascent program containing one
field for each relation (or lattice) in the program, and one
field for each index of a relation/lattice. Next, we generate
a single run method which acts as the entrypoint to per-
form evaluation of the program. This method walks over the
SCC graph in topologically-sorted order and, for each SCC
evaluates the rules within that SCC using the semi-naive
evaluation strategy.

Our compilation strategy for rules is similar to that of
Soufflé’s: rules are compiled to a series of nested loops iter-
ating over values of respective tuples in relations appearing
within the rule to perform joins [24]. While the order of
clauses in Ascent is significant, the compiler is capable of
reordering clauses in cases where such reordering does not
introduce ungrounded variables, which is crucial to efficient
evaluation of rules.

For example, consider the following rule for computing
the transitive closure of a relation: tc(x, z) <-- r(x, y),
tc(y, z). This rule is translated to the following Rust code
(simplified for clarity).
if r_ind_1_total.len() <= tc_ind_0_delta.len(){

for (y, r_tuples) in r_ind_1_total.iter(){

if let Some(tc_tuples)=tc_ind_0_delta.get(y){
for &r_ind in r_tuples.iter() {

let x = &self.r[r_ind].o;

for &tc_ind in tc_tuples.iter() {
let z = &self.tc[tc_ind].1;
let new_row: (i32, i32) = (*x, *z);
// insert new_row into tc and update
// its indices

}
3
3
}
} else {
// iterate over tc first ...

}

Here r_ind_1_total and tc_ind_0_delta are the indices
required for the join. The emitted code first picks the smaller
one (r shown here), then iterates over its key-value pairs,
finding matches in tc. Once a match is found, the matching
tuples of r and tc are iterated over, yielding new facts to be
added to the new version of tc.

In addition to the ascent macro, we provide the ascent_
run macro. The output of invocations of this macro are ex-
pressions, as opposed to items for ascent invocations. The
output of ascent_run is a value containing fields for relations
defined in the Ascent program, computed to a fixed point.
The main advantage of ascent_run is that the rules in the
Ascent program will have access to local variables in scope.

83

CC ’22, April 02-03, 2022, Seoul, South Korea

Additionally, Ascent programs can be generic. Ascent al-
lows a struct declaration at the top of an Ascent program,
which can include type parameters.

We combine these features to define a generic version
of the TC program that computes the (optionally reflexive)
transitive closure of the input relation:
fn compute_tc<N>(r: Vec<(N, N)>, reflexive: bool)

-> Vec<(N, N)> where N: Clone + Hash + Eq {
ascent_run!{struct TC<N: Clone + Hash + Eg>;
relation r(N, N) =r;
relation tc(N, N);
te(x, y) <== r(x, ¥);
te(x, z) <-- r(x, y), tc(y, 2);
tc(x, x), tc(y, y) <-- if reflexive, r(x, y);

}.tc

}

Clone, Hash, and Eq are constraints that every relation col-
umn type must satisfy.

5 Evaluation

In this section, we describe our evaluation of Ascent via
three sets of experiments. The first is the reimplementation
of Polonius, a Datalog-based implementation of the Rust
borrow checker. The second evaluates our compilation of
lattices by comparing the implementation of a shortest-paths
algorithm in Ascent with an equivalent implementation in
Flix. The third uses a simple graph-mining algorithm to
compare the performance of Ascent with Soufflé. All the
experiments were performed on a machine with a Core i7-
8650U Intel CPU and 16GB of RAM.

5.1 Rust Borrow Checker

Rust’s type system includes a sophisticated borrow checker
to check memory usage invariants. For example, the borrow
checker ensures that references point to live memory at the
time of each access, a crucial property for type safety of
Rust programs. The Rust borrow checker can be expressed
as a series of Datalog rules [17]. This formulation of the
Rust borrow checker has inspired a formalization of the Rust
language, along with safety proofs [33].

To provide intuition for how the Datalog-based borrow
checker works, we use the following example:
1 let mut v = vec![1, 2];

2 let r: &i32 = &v[e]l; // L1
3 v.push(3);
4 println!("r is {}", r);

This innocent-looking piece of code has an illegal memory
access, and is rejected by the Rust compiler (specifically by
the borrow checker)—r takes a reference to an element of
vector v (it borrows v), then v is mutated, possibly deallocat-
ing the memory referenced by r, meaning that the final line
is potentially reading deallocated memory.

Each reference type (e.g., &132) is annotated with a unique
origin parameter, along with each reference (or loan). The

CC ’22, April 02-03, 2022, Seoul, South Korea

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski

Table 1. The Polonius benchmarks. Times are in seconds. subset size refers to the # of facts in the relation subset, the biggest relation
in all test cases. clap-rs is the benchmark in the Polonius repo. serde-fmt is the biggest function (in # of input facts) in the serde library
[7]. ascent-codegen is the code generation function of the Ascent compiler. ascent_naive_compute is Rust code generated by the naive
implementation of borrow checker in Ascent. chess-search is the search function of a chess engine.

Benchmark Naive Analysis Optimized Analysis

subset Datafrog Ascent slow- | subset Datafrog Ascent slow-

name LOC
size time time down | size time time down
clap-rs 2100 | 6.7M 12.03 11.96 99x | 2.5M 4.49 4.54 .99x
serde-fmt 170 | 45M 1.83 4.45 24x | 2.1M 0.43 0.72 1.7x
ascent-codegen 800 | 1.61M 0.80 2.09 2.6x | 0.75M 0.28 0.40 1.4x
ascent_naive_compute 1000 | 14.2M 10.8 44.0 4.1x | 6.0M 2.65 5.20 1.96x
chess-search 600 | 25.1M 17.0 55.7 3.3x | 14.6M 4.64 10.2 2.2x

usual subtyping relation must hold between variables and
their values, and thus in line 2 of the above example, the type
of r (which we here call &'a i32 by introducing the origin
parameter) must be a supertype of the type of expression
&v[0] (which we’ll call &'b i32); this in turn requires that
'a subsumes 'b ('b: 'a). Intuitively, this may be read as “'b
outlives 'a”. These relations must hold wherever the control
flow graph leads. In our example, this means that the relation
must hold on lines 3 and 4 as well. We can summarize this
requirement as a logical rule:
relation cfg_edge(Point, Point);
relation subset(Origin, Origin, Point);
subset(originl, origin2, point2) <--

subset(originl, origin2, pointl1),

cfg_edge(pointl, point2);

We also need to track the kinds of loans. There are two
kinds of loans in Rust, shared (immutable), and unique (mu-
table). The problem with the above code is that a second
loan exists for v while a unique loan is active, which is dis-
allowed by Rust’s borrow checker. This fact is encoded as
an input fact of the form loan_invalidated_at(L1, line_3).
The analysis also includes rules for tracking what loans are
alive at what points of the execution (loan_live_at):
loan_live_at(loan, point) <--

origin_contains_loan_on_entry(origin, loan, point),
origin_live_on_entry(origin, point);

origin_live_on_entry is an input to the analysis, and
origin_contains_loan_on_entry propagates another input
to the analysis, loan_issued_at through the subset and cfg_
edge relations. This means that origin_contains_loan_on_
entry('a, L1, line_3) is derivable. From our example, 'a
is alive at line 3 because it is accessed on line 4; combined
with the aforementioned derived fact, we can derive that the
loan L1 is alive at line 3. On the other hand, L1 is invalidated
at line 3. These facts combine to produce the error:
error(loan, point) <--

loan_invalidated_at(loan, point),
loan_live_at(loan, point);

84

The Polonius [18] project implements the borrow checker
using Datafrog [21], a library for writing Datalog rules in
Rust. This borrow checker is experimentally integrated into
the Rust compiler, although it has not yet replaced the exist-
ing hand-written borrow checker.

We implemented both the naive and optimized versions
of the borrow checkers in Polonius using Ascent. These both
compute the same potential errors, with the optimized ver-
sion using domain-specific knowledge to reduce the number
of intermediate facts generated, decreasing execution time.

We compared our results with the existing Datafrog-based
implementation, as summarized in Table 1. The performance
of the Ascent implementation is comparable to the Datafrog
implementation for the only benchmark in the Polonius
project: clap-rs, though we also include four more bench-
marks not present in Polonius’ implementation. We used
mostly macro-generated code for the other benchmarks, as
they tend to be big enough in size to meaningfully stress
the implementations. We ensured the correctness of our im-
plementation by comparing the output of each analysis and
verifying that their results match exactly.

The difference in performance ranges from roughly equal
in some benchmarks, to Datafrog being about 4x faster in
the worst benchmarks for Ascent. This difference is partially
attributed to the fact that in Datafrog, relation tuples must be
total orders, allowing Datafrog to utilize optimal multi-way
join algorithms [23]. Ascent can be updated to use optimal
join algorithms when the user instructs the compiler that
relations have total order columns, utilizing optimal joins
when possible while retaining its current flexibility.

With respect to Polonius, Ascent’s significant advantage
is its concision. In the naive analysis, the Datafrog implemen-
tation is 101 lines of code, versus 46 LOC for Ascent; in the
optimized analysis, the difference is 210 LOC for Datafrog
vs 100 LOC for Ascent. We also observe an ergonomic ben-
efit to Ascent, which avoids unnecessary low-level details
that must be specified in the Datafrog implementation. For
example, here is a Datafrog rule from Polonius:

Seamless Deductive Inference via Macros

CC ’22, April 02-03, 2022, Seoul, South Korea

Table 2. Shortest paths benchmarks. Times are in seconds. Loop1000 is a loop with 1000 nodes, Complete100 and Complete1000 are
complete graphs with 100 and 1000 nodes. Watts-Strogatz is a random small-word graph [32] with random weights. Facebook survey is a
Facebook friendship graph [20]. HE PhysTH is a coauthorship graph of High Energy Physics theory papers [14]. DNF indicates that the
analysis failed with an out of memory error after running for several hours.

Benchmark SP Lengths Shortest Paths
name nodes edges ‘ Flix time Ascent time speedup ‘ Flix time Ascent time speedup
Loop1000 1000 1000 59.7 0.62 96x | 60.6 0.69 87x
Complete100 100 9900 4.3 0.025 172x | 5.9 0.057 103x
Complete1000 1000 999000 | 6328 42.8 148x | 6779 121 56x
Watts-Strogatz 1000 1999 150 1.34 112x | 161 1.60 100x
Facebook survey 4039 88233 | 468 4.87 96x | 485 7.0 69x
HE PhysTH 9877 51970 | DNF 315 — | = 378 —

subset_errors.from_leapjoin(
&subset, (
placeholder_origin.extend_with(|&(o1, _o2, _p)|ol),
placeholder_origin.extend_with(|&(_o1, 02, _p)|o2),
known_placeholder_subset
.filter_anti(|&(o1, 02, _p)| (o1, 02)),

datafrog: :ValueFilter: :from(|&(o1, 02, _p), _| {
ol != 02

})l

)7

|&(o1, 02, p), _| (o1, 02, p),
);

By contrast, the corresponding rule in Ascent is much
terser:
subset_error(originl, origin2, point) <--

subset(originl, origin2, point),

placeholder_origin(origini),
placeholder_origin(origin2),

Iknown_placeholder_subset(originl, origin2),

if originl != origin2;

In Datafrog, indexing must be performed manually: the
user is responsible for introducing different versions of the
same relation with different indices and writing rules for
populating these versions. There are also restrictions on
multi-way joins: such a join can include no more than one
dynamic relation (one that is read from and updated in the
same iteration). Additionally, Datafrog cannot compute the
interdependencies of rules and break down a collection of
rules into a series of SCCs for optimal computation. All such
optimizations must be done manually by the programmer.

5.2 Shortest Paths

We used the shortest paths program, introduced in 3.1 as
a motivating example for lattices, to compare the perfor-
mance of Ascent with Flix. We also wrote a version of the
program that computes the actual shortest paths in addition
to shortest path lengths. Modifying the shortest path lengths
program to include the actual paths is straightforward in
Ascent:

lattice shortest_path(i32,i32, (Dual<u32>,List<i32>));

85

shortest_path(x, z, (Dual(w + len), cons(x, p))) <--
edge(x, y, w),
shortest_path(y, z, ?(Dual(len), p));

/] ...

Here, List<T>, used to store the paths between nodes, is a
singly-linked list, and the type (Dual<u32>, List<i32>)isa
total order with lexicographic ordering, making it a Lattice
with the correct semantics for this problem.

We wrote both programs in Flix, and compared their per-
formance on a collection of test graphs. The graphs include
both synthetic and real-world graphs. We used Flix version
0.25, the latest version available at the time of performing
our experiments. The results are presented in Table 2.

We saw significant speedups of around two orders of mag-
nitude in our Ascent implementations, with the smallest
speedup being 56X. This again highlights the benefit of our
compilation strategy: we compile the source Ascent program
directly to high-performance Rust code. The generated Rust
code, when compiled, avoids any dynamic dispatch (which
Flix relies on for invoking joins, among other operations),
and avoids unnecessary indirections, including boxing of sim-
ple values (as required by the Java runtime): the Dual<u32>
type has the exact same footprint as u32, but the same cannot
be said of the wrapper type we had to use for integers in Flix
to implement leastUpperBound.

5.3 Graph Mining

As a means of comparing Ascent’s performance with Soufflé,
we implemented identical programs for discovering cliques
of up to size 5 in Ascent and Soufflé’s Datalog. We ran the
programs on a number of real-world graphs and verified
that the results match exactly. We used Soufflé version 2.1
in compiler mode. The results are presented in Table 3. We
note that while Ascent is competitive with Soufflé’s single-
threaded performance, Soufflé is capable of generating multi-
threaded code, a feature currently absent in Ascent.

CC ’22, April 02-03, 2022, Seoul, South Korea

Table 3. 5-clique benchmarks. Times are in seconds and rep-
resent best of five runs. Astro Phys is a coauthorship graph of
Astrophysics papers [14]. Brightkite is a location-based social net-
work [6]. Enron emails is a graph of email communications [12].
Slashdot Zoo is a social network [13].

Benchmark Times
name nodes edges ‘ Soufflé Ascent speedup
HE PhysTH 10K 52K | 0.11 0.07 1.6x
Astro Phys 19K 396K | 15.6 19.6 0.8x
Brightkite 58K 428K | 5.73 4.76 1.2x
Enron emails 37K 368K | 2.92 2.15 1.4x
Slashdot Zoo 77K 905K | 4.47 3.45 1.3x

6 Related Work

Compilation of Datalog. Soufflé [24] is a high-
performance Datalog engine that uses a compilation
strategy similar to Ascent’s: both utilize a systems pro-
gramming language as the compilation target. For Soufflé
the target language is C++. Soufflé utilizes efficient index
selection schemes [28] and various other techniques for
generating efficient code. While Ascent does not yet utilize
all these techniques, they can in principle be implemented
in Ascent.

Extensions to Datalog. Formulog[3] is an extension to
Datalog which aims to integrate an SMT solver with Data-
log. Formulog has support for defining algebraic data types
and first order functions operating over the ADTs in addi-
tion to primitive data types. In Formulog the defined ADTs
can appear inside SMT formulas. Additionally, uninterpreted
functions and sorts can be defined in Formulog for use inside
SMT formulas; however, first-order functions defined in For-
mulog are not accessible in SMT formulas. This may force
the programmer to effectively define functions that need to
be used inside and outside SMT formulas twice, once as a
Formulog function, and once as a formula.

It is theoretically possible to interface with SMT solvers
in Ascent, so long as there are Rust libraries for doing so.
However, Ascent would not not have the tight integration
with SMT solvers that Formulog provides, as Formulog is
designed specifically with that goal in mind.

Computing fixed points on non-powerset lattices. As
discussed in Section 3, Flix combines Datalog-style rules with
ADTS, functions, and the ability to compute non-powerset-
based fixed points by defining lattices, which was the inspi-
ration for implementing lattices in Ascent.

Later iterations of Flix have evolved in an orthogonal di-
rection [15], embedding logic programs in a functional pro-
gramming language, where the logic programs are first-class
values and can be combined to yield new logic programs, a

86

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski

capability that Ascent lacks. In addition to allowing more ex-
pressivity in defining rules, as discussed in Section 3, Ascent
is more performant than Flix, as we saw in Table 2.

Datafun [2] is a foundational attempt at combining higher
order functional programming with computing fixed points
on lattices. Datafun is capable of guaranteeing termination
of fixed point computations by tracking the monotonicity of
functions and the finiteness of the height of lattices on which
the monotone functions operate, capabilities that are absent
in Ascent (or Flix). We regard Ascent as a practical attempt
at allowing computing fixed points of non-powerset lattices,
with syntax already familiar to Datalog users; compared to
the foundational nature of Datafun.

Logic programming in Rust. Datafrog [21] is a library
for writing Datalog rules in Rust. Since Datafrog is not a lan-
guage, writing Datalog rules in Datafrog tends to be verbose:
the user is responsible for explicitly defining all the indices
of a relation that are required, and ensuring those indices
remain consistent by adding rules for transferring facts be-
tween them. The forms the rules take are also somewhat
verbose as we discussed in 5.1.

Datafrog requires relation tuples to be total orders, allow-
ing it to perform efficient multi-way joins [23] (although it
imposes limitations on them: only one dynamic relation is
allowed in a multi-way join). Ascent does not have that re-
quirement, and does not take advantage of these efficient join
algorithms currently. Having a best-of-both-worlds scenario,
where relation tuples are not required to be total orders, but
can be marked as so by the Ascent user to unlock better join
algorithms is a future possibility for Ascent.

7 Future Work

There are a few areas of improvement that we’d like to work
on to evolve Ascent.

Performance. We plan to investigate enabling more op-
timal join algorithms (e.g., [23]), and more optimal index
selection schemes [28]. As was discussed earlier, currently
Ascent relies on hashing for indexing relations, which al-
lows more types to be used as relation columns, but sacrifices
some performance.

Parallelization. The code generated by Ascent is cur-
rently single-threaded. Updating the compiler to generate
parallel code is another avenue of improvement for Ascent.
The advantage of our approach is that such a change will
be transparent to the Ascent user as long as thread safety is
not a concern. When types used as relation columns are not
thread safe, the Rust type system will be able to flag those,
ensuring future parallelized Ascent programs will be thread
safe. Rc, the reference counted pointer type that we used in
our examples, is an instance of a non-thread-safe type. The
fix in this case is simple: using Arc, the thread-safe version
of Re instead.

Seamless Deductive Inference via Macros

8 Conclusion

We presented Ascent, a logic programming language in the
style of Datalog embedded in Rust. Embedding Ascent in
Rust allows the Ascent user to immediately take advantage
of Rust’s language features and ecosystem.

Throughout the paper, we demonstrated Ascent’s expres-
sivity, practicality, and performance. The abstract CESK*
example was designed to show the expressivity of Ascent,
including its ability to handle abstract domains through its
support for lattices. The Polonius comparison was done to
showcase the convenience and practicality of using Ascent:
we were able to write the analysis exactly as it would’ve been
written in Datalog from within Rust, where it is needed. We
used the shortest paths program to demonstrate Ascent’s per-
formance, and the advantages of our compilation strategy.
Finally, we showed that Ascent is competitive with Souf-
flé using the graph mining benchmarks. We hope to have
demonstrated that Ascent presents an innovative approach
to implementing compilers for logic programming, one that
yields a powerful and practical language.

References

[1] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan
Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.
2015. Design and Implementation of the LogicBlox System. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data (Melbourne, Victoria, Australia) (SSIGMOD ’15). As-
sociation for Computing Machinery, New York, NY, USA, 1371-1382.
https://doi.org/10.1145/2723372.2742796

Michael Arntzenius and Neelakantan R Krishnaswami. 2016. Data-
fun: a functional Datalog. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming. 214-227. https:
//doi.org/10.1145/2951913.2951948

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. For-
mulog: Datalog for SMT-based static analysis. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1-31. https:
//doi.org/10.1145/3428209

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative
Specification of Sophisticated Points-to Analyses. In Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (Orlando, Florida, USA) (OOPSLA
’09). ACM, New York, NY, USA, 243-262. https://doi.org/10.1145/
1640089.1640108

Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. 1989. What you
always wanted to know about Datalog(and never dared to ask). IEEE
transactions on knowledge and data engineering 1, 1 (1989), 146-166.
https://doi.org/10.1109/69.43410

Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and
mobility: user movement in location-based social networks. In Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1082-1090. https://doi.org/10.1145/2020408.
2020579

The Serde Developers. 2021. serde-rs/serde: Serialization framework
for Rust. Retrieved November 2, 2021 from https://github.com/serde-
rs/serde

R. Kent Dybvig. 1992. Writing Hygienic Macros in Scheme with
Syntax-Case.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. 1997. Disjunctive
Datalog. ACM Trans. Database Syst. 22, 3 (sep 1997), 364-418. https:

(7]

87

CC ’22, April 02-03, 2022, Seoul, South Korea

//doi.org/10.1145/261124.261126

Thomas Gilray, Michael D. Adams, and Matthew Might. 2016. Alloca-
tion Characterizes Polyvariance: A Unified Methodology for Polyvari-
ant Control-flow Analysis. In Proceedings of the 21st ACM SIGPLAN In-
ternational Conference on Functional Programming (Nara, Japan) (ICFP
’16). ACM, New York, NY, USA, 407-420. https://doi.org/10.1145/
2951913.2951936

Herbert Jordan, Bernhard Scholz, and Pavle Suboti¢. 2016. Soufflé:
On Synthesis of Program Analyzers. In Computer Aided Verification,
Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International
Publishing, Cham, 422-430. https://doi.org/10.1007/978-3-319-41540-
6.23

Bryan Klimt and Yiming Yang. 2004. Introducing the Enron corpus..
In CEAS.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed
networks in social media. In Proceedings of the SIGCHI conference on
human factors in computing systems. 1361-1370. https://doi.org/10.
1145/1753326.1753532

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph
evolution: Densification and shrinking diameters. ACM transactions
on Knowledge Discovery from Data (TKDD) 1, 1 (2007), 2—es. https:
//doi.org/10.1145/1217299.1217301

Magnus Madsen and Ondfej Lhotak. 2020. Fixpoints for the masses:
programming with first-class Datalog constraints. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1-28. https:
//doi.org/10.1145/3428193

Magnus Madsen, Ming-Ho Yee, and Ondfej Lhotak. 2016. From datalog
to flix: A declarative language for fixed points on lattices. ACM SIG-
PLAN Notices 51, 6 (2016), 194-208. https://doi.org/10.1145/2908080.

[10]

(1]

[12]
[13]

[14]

[15]

[16]

2908096
[17] Nicholas Matsakis. 2018. An alias-based formulation of
the borrow checker. Retrieved November 15, 2021 from

http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-

alias-based-formulation-of-the-borrow-checker

Nicholas Matsakis and The Rust Developers. 2021. Rust-Lang/polonius:

Defines the Rust borrow checker. Retrieved November 2, 2021 from

https://github.com/rust-lang/polonius

Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust Language. Ada

Lett. 34,3 (oct 2014), 103-104. https://doi.org/10.1145/2692956.2663188

[20] Julian] McAuley and Jure Leskovec. 2012. Learning to discover social

circles in ego networks.. In NIPS, Vol. 2012. Citeseer, 548-56.

Frank McSherry and The Rust Developers. 2021. Rust-Lang/datafrog:

A Lightweight Datalog engine in rust. Retrieved November 15, 2021

from https://github.com/rust-lang/datafrog

Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Re-

solving and exploiting the k-CFA paradox: illuminating functional

vs. object-oriented program analysis. In Proceedings of the 31st ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation. 305-315. https://doi.org/10.1145/1806596.1806631

Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-

case optimal join algorithms. Journal of the ACM (FJACM) 65, 3 (2018),

1-40. https://doi.org/10.1145/3180143

Bernhard Scholz, Herbert Jordan, Pavle Suboti¢, and Till Westmann.

2016. On Fast Large-scale Program Analysis in Datalog. In Proceedings

of the 25th International Conference on Compiler Construction. ACM,

196-206. https://doi.org/10.1145/2892208.2892226

[25] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Dis-

tributed Socialite: A Datalog-Based Language for Large-Scale Graph

Analysis. Proc. VLDB Endow. 6, 14 (sep 2013), 1906-1917. https:

//doi.org/10.14778/2556549.2556572

Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages.

Ph.D. Dissertation. Carnegie-Mellon University, Pittsburgh, PA.

[27] Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for
Fast and Easy Program Analysis. In Proceedings of the First International

(18]

[19]

[21]

[22]

[23]

[24]

[26]

https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2951913.2951948
https://doi.org/10.1145/2951913.2951948
https://doi.org/10.1145/3428209
https://doi.org/10.1145/3428209
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1145/2020408.2020579
https://github.com/serde-rs/serde
https://github.com/serde-rs/serde
https://doi.org/10.1145/261124.261126
https://doi.org/10.1145/261124.261126
https://doi.org/10.1145/2951913.2951936
https://doi.org/10.1145/2951913.2951936
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428193
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker
https://github.com/rust-lang/polonius
https://doi.org/10.1145/2692956.2663188
https://github.com/rust-lang/datafrog
https://doi.org/10.1145/1806596.1806631
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.14778/2556549.2556572
https://doi.org/10.14778/2556549.2556572

CC ’22, April 02-03, 2022, Seoul, South Korea

(28]

(30]

Conference on Datalog Reloaded (Oxford, UK) (Datalog’10). Springer-
Verlag, Berlin, Heidelberg, 245-251. https://doi.org/10.1007/978-3-
642-24206-9_14

Pavle Suboti¢, Herbert Jordan, Lijun Chang, Alan Fekete, and Bern-
hard Scholz. 2018. Automatic Index Selection for Large-scale Dat-
alog Computation. Proc. VLDB Endow. 12, 2 (Oct. 2018), 141-153.
https://doi.org/10.14778/3282495.3282500

David Van Horn and Harry G Mairson. 2008. Deciding k CFA is
complete for EXPTIME. ACM Sigplan Notices 43, 9 (2008), 275-282.
https://doi.org/10.1145/1411203.1411243

David Van Horn and Matthew Might. 2010. Abstracting Abstract
Machines. In Proceedings of the 15th ACM SIGPLAN International Con-
ference on Functional Programming (Baltimore, Maryland, USA) (ICFP
’10). ACM, New York, NY, USA, 51-62. https://doi.org/10.1145/1863543.

88

[31]

[32]

[33]

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski

1863553

Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guo-
qing Harry Xu. 2018. RStream: Marrying Relational Algebra with
Streaming for Efficient Graph Mining on a Single Machine. In Proceed-
ings of the 13th USENIX Conference on Operating Systems Design and
Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association,
USA, 763-782.

Duncan] Watts and Steven H Strogatz. 1998. Collective dynamics
of ‘small-world’networks. nature 393, 6684 (1998), 440-442. https:
//doi.org/10.1038/30918

Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D Matsakis,
and Amal Ahmed. 2019. Oxide: The essence of rust. arXiv preprint
arXiv:1903.00982 (2019). https://doi.org/10.48550/arXiv.1903.00982

https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.14778/3282495.3282500
https://doi.org/10.1145/1411203.1411243
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.48550/arXiv.1903.00982

	Abstract
	1 Introduction
	2 Background
	2.1 Datalog
	2.2 Rust

	3 The Language
	3.1 Going Beyond the Powerset Lattice
	3.2 User-Extensible Aggregation

	4 Implementation
	5 Evaluation
	5.1 Rust Borrow Checker
	5.2 Shortest Paths
	5.3 Graph Mining

	6 Related Work
	7 Future Work
	8 Conclusion
	References

